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ABSTRACT

A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique
draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which
relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the
use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters

is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation
and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train
the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft
and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation
performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
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1. INTRODUCTION

This paper presents an effort to apply optical correlation to pose estimation sensors for rendezvous and docking of free-
flying spacecraft and space-based surface mobility systems. Two significant advances in recent years have motivated
this current attempt at applying optical correlators to space-based pose estimation. The first advance is the development
of high-speed optical correlators. An optical correlator has been recently developed which can perform up to 4000
correlations per second 1. This correlator is capable of comparing a single spacecraft image to a very large database of
images in a reasonable amount of time. When using synthetic discriminant function (SDF) filters, this correlator could
identify an object from a database of thousands of images or poses within a single second. Such a correlator has the
potential of enabling a sensor that could yield pose estimates on the order of 1-10 Hertz, a reasonable bandwidth for
space applications. The second advance is the emergence of sophisticated solid modeling and animation software
running on desktop computers with ever growing processing speed and memory allocations. These new software tools,
such as 3ds Max® by Autodesk, facilitate the generation of a multitude of images for use as matched filters in an optical
correlator. This animation software enables simulation of objects from actual CAD designs, with realistic lighting
conditions and camera parameters. Many SDF filters could be designed, a priori, relatively rapidly using computer-
generated filter databases. These two advances, when incorporated with linear and nonlinear estimation techniques
(including artificial neural networks) give merit to new efforts to use optical correlation techniques for space vehicle
pose estimation 2.

Castro, et al. 3'4 proposed an approach to pose estimation that shows promise for our task. Figure 1 graphically
illustrates their technique. Within this framework, the high-speed optical correlator would be used to evaluate the
correlations and provide the measurements to the pose estimator. The pose estimator, residing on the spacecraft on-
board computer, estimates the vehicle states or poses (attitude and position) as a function of the measurements The
pose estimator is the inverse of a transformation from a space comprising the poses to a space comprising the
correlation measurements. The transformation is, in general form, nonlinear so a nonlinear estimator would be a natural

solution. Artificial neural networks are well suited to nonlinear estimation problems and were investigated by Castro et
al. 3'4 for this application. In certain smaller regimes, a linear estimator may yield good estimates and be a good
approximation to the nonlinear estimator as also shown by Castro et al. 3'4.
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Figure 1. Pose Estimator Concept

In our current attempt at space vehicle pose estimation, we adopted the Castro technique 3'4, extended it from 2 degrees-

of-freedom (DOF) to 3DOF, and looked at the practical implementation using binary phase-only filters (BPOF) on the
Boulder Nonlinear Systems correlator 1 Castro estimated a recognition flag as one of the states in the pose estimator of
Figure 1. That approach often resulted in false detections of images not within the detection class, especially with linear
correlations. We propose to remedy that ambiguity with a 2-step approach. The first step is an interclass discrimination

step, in which the class of the test image would be ascertained. The second step is the pose estimation step,
implementing the concept in Figure 1.

In this paper we report on the theoretical feasibility of this pose estimation technique, present quantitative performance
results, and discuss issues associated with its implementation in real hardware. Section 2 gives a general description of

the 2-step process: class distinction followed by pose estimation. Section 3 describes the implementation of the 2-step
process using conjugate matched filters with both linear and nonlinear estimators. Section 4 describes the adaptation of
the 2-step process for realization in a high-speed optical correlator using binary phase-only synthetic discriminant
function (BPOSDF) filters for the detection step and binary phase-only filters (BPOF) for the pose estimation step.
Section 5 discusses some of the practical considerations in implementing this type of pose estimator. Section 5 also
presents some general observations and some lessons learned from the development of this pose estimator.

2. DESCRIPTION OF THE TWO-STEP PROCESS

We propose a pose estimation methodology involving a two-step process. The first step is an interclass discrimination
step. The interclass discrimination step processes the observed image and determines which "class" or subset of poses
to which it belongs. We intend to perform the interclass distinction using synthetic discriminant function (SDF) filters
in a manner first suggested by Casasent 5. The second step is a linear pose estimation step operating within the class
identified in step one. The second step involves a relatively small bank of "construction" filters within the discerned
class. This bank of filters is used to compute, a priori, a linear mapping between the poses represented by the
construction filters and the auto- and cross-correlations between each of the filters in the construction set. It is well

known that the relationship between pose and correlation is not nicely linear, but trader certain conditions, a linear
approximation might be sufficient for some kinds of pose estimation requirements. The remainder of this section
describes the mathematical operations involved in each step of the 2-step pose estimation process.

A classical synthetic discriminant function (SDF) filter is defined by equation (1):

H k =__aiF i (1)
_=1



The kth SDF is a weighted superposition of a set of N filters, F. The filters, F, are the complex conjugates of the
Fourier transforms of the images in the construction set. The coefficient ai is the weighting coefficient on each filter.
The weight coefficients are computed by equation (2):

a = R-1C (2)

C is an Nxl vector comprising prescribed correlation values for the resultant SDF. The matrix, R, is the NxN matrix of
correlations among the N images in the construction set. For conjugate matched filters, R is symmetric and thereby, full
rank and invertible. The selection of the vector C becomes the key in designing the SDF. In this paper we investigated
two approaches to selecting C, the multilevel nonredundant filter method and the equal correlation peak method 5. Each

of these two approaches has its own merits and drawbacks, and some of them will be exposed in our application to
conjugate filters and binary phase-only filters.

The second step is the pose estimation step. For this solution we borrow a technique from Castro et al 3'4. We seek to
establish a relationship or mapping from the object poses to the numerical values obtained by correlating images of
known poses with the observed 2-dimensional image. Equation (3) is an equation that might govern such a relationship.

C = TP (3)

The Nxl vector C comprises the N correlations that were evaluated using the N construction filters within the class of
interest. The vector P is the 3xl vector comprising the 3 pose degrees-of-freedom (DOF). The matrix T is an Nx3
matrix which is a linear mapping from poses to correlations for that particular set of construction filters. If one has N
construction filters representing N distinct poses, then P would become 3xN, and the C-matrix would become NxN, the
correlation matrix of the construction filters with themselves.

The linear estimator is obtained by computing the pseudo-inverse of T. The preferred method for computing the linear
estimator is shown in equation (4).

T + = PC-' (4)

Since C=R, the correlation matrix is full-rank and invertible. Computation of the pseudo-inverse of T by equation (4)

minimizes estimator errors arising from poor numerical conditions. Otherwise, one could solve for T by taking the
pseudo-inverse of P and premultiplying it to C. Then one would explicitly evaluate the pseudo-inverse of T by
conventional methods. This latter approach introduces significant numerical errors first, in the pseudo-inverse of P,

which is highly rectangular, and second in the subsequent pseudo-inverse of an already poorly computed matrix
comprised of the pseudo-reverse of P.

The poses can be estimated by equation (5).

k = Z + C .... (5)

The vector Cmeasis a vector comprising the N measured correlations of the observed image with the N construction
filters in the filter bank of this particular class. Equation (5) yields an estimate of the poses based on a linear
approximation to the mapping of poses to correlations even though the relationship, for both conjugate and BPOF
filters, is nonlinear. Equation (6) expresses this relationship in general form.

C = T(P) (6)

Equation (6) shows T as a general, nonlinear function of the poses P. Then a nonlinear pose estimator would look like
equation (7).



= (7)

In equation (7) T' is the nonlinear estimator, which is a nonlinear function of the correlations C. Below we design the
nonlinear estimator by training, apriori, an artificial neural network.

3. TWO-STEP PROCESS USING CONJUGATE MATCHED FILTERS

This section describes the 2-step pose estimation process using conjugate matched filters only. The first step is the
interclass discrimination step. In the interclass discrimination step an SDF is designed in order to determine the class to
which the observed image belongs. The SDF was designed using the multilevel nonredundant filter approach described
by Casasent 5. We next describe how we applied that approach to the example problem of Space Shuttle pose
estimation.

Figure 2a-2d depicts four different "classes" of Space Shuttle poses. In other applications "class" may mean an entirely
different object. Here "class" means a distinctly different Space Shuttle orientation or pose. The images were obtained
from a Space Shuttle model in the 3ds Max® animation software from Autodesk. Each of the four classes was assigned

a prescribed correlation value. The prescribed correlation values comprise the vector C, and in this case we chose C =
[150,000 120,000 90,000 60,000] T. The prescribed correlation values were chosen to establish a significant threshold

between the different classes. In this way a single SDF is intended to distinguish four different classes using four
different levels of correlation values. Thus it is a nonredundant multilevel filter.

Figure 2a. Class 1 Figure 2b. Class 2 Figure 2c. Class 3 Figure 2d. Class 4

A single SDF, H, was designed according to equations (1) and (2) and implemented in equation (8):

H = _. aiF i (8)
i=I

Each Fi is the complex conjugate of the Fourier transform of the corresponding image in Figure 2. Each ai is the
weighting coefficient on each of the filters representing the four images. The weighting coefficients, ai, are computed
from equation (2). In this case the matrix R is the 4x4 matrix of auto- and cross-correlations evaluated using the four
images in Figure 2. For this particular set of images and the prescribed correlations in C, the solution becomes a =
[7.17 15.47 12.70 8.93] T.

The SDF was synthesized by substituting the vector a into equation (8). Next, the SDF was tested on a set of images.
The test image set was obtained from 3ds Max® by generating 125 images from 0-8 degrees in pitch, yaw and roll
about the orientation in Figure 2a. The images were generated in 2-degree increments. Correlations were then
computed for each test image with the SDF, H. The correlation values are plotted in Figure 3. Note that all the
correlation values are above 132,000. That magnitude clearly exceeds the threshold of 120,000 for the second class of



Space Shuttle poses from Figure 2. This test indicates that this particular SDF is a good interclass discriminator for
poses within 8 degrees of the orientation in Figure 2a in pitch, yaw and roll.
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The performance of the linear estimator was evaluated using 189 test images within the class-1 cube. Each of the 125
images was correlated with the 27 construction filters. The values were stored in 189 separate 27xl vectors. The 3x27
linear estimator was multiplied to each correlation vector. After running all 189 test images through the linear
estimator, statistics were compiled for the estimator's accuracy within this class. Pitch (out-of-plane) accuracy was 0.22
degrees RMS. Yaw (in-plane) accuracy was 0.20 degrees RMS. Roll (out-of-plane) accuracy was 0.14 degrees RMS.
These results are comparable to those reported previously for a 2DOF linear estimator 3'4.

Next an artificial neural network (ANN) was designed in order to attempt to improve the accuracy of the linear
estimator. Castro et al. 3'4reported a significant gain in performance with ANNs on the 2DOF problem. We attempted
to apply an ANN to the 3DOF problem. An estimator in the form of equation (7) was implemented in a 2-layer back-
propagation network trained by the Levenberg-Marquardt algorithm. The ANN used 27 correlations as the input, just
like the linear estimator. Best results were obtained with 60 neurons in the hidden layer and 40 training epochs. 125 of
the 189 test images were used as "training" filters for the neural network. Estimator performance was assessed by
evaluating all 189 test images. Pitch accuracy was 0.22 degrees RMS. Yaw accuracy was 0.17 degrees RMS, and roll
accuracy was 0.14 degrees RMS.

The results from the ANN show slight improvement over the linear estimator, but not very much. Since the ANN had a

very high accuracy on the 125 images in the training set, the statistics were skewed by the training poses. We were
interested in how well the ANN estimated those poses that were not in the training set. Statistics for the 64 non-training
filters were significantly worse. Pitch accuracy was 0.40 degrees RMS. Yaw accuracy was 0.29 degrees RMS, and roll
accuracy was 0.24 degrees RMS. These results indicate that the ANN was over-fitting between the points in the
training set.

4. TWO-STEP PROCESS USING BPOSDF AND BPOF

The ultimate goal of this undertaking was to implement the pose estimator in a real high-speed optical correlator

incorporating spatial light modulators (SLM). This hardware requires exclusively real-valued filters. Binary phase only
filters (BPOF) are well suited for this application since their values are either 1 or -1. In our two-step pose estimation
process, the first challenge in implementation is to convert the conjugate matched SDF into a binary phase-only



syntheticdiscriminantfimction(BPOSDF)filterfortheclass-distinctionstep.It isexpectedthattheBPOSDF,beinga
discreteapproximationtotheconjugatematchedfilter,will notbehaveexactlyastheconjugateSDFdid,andsome
accommodationsmighthavetobemade.Inthesecondstep,thelinearestimationstep,theconstructionsetoffilters
mustbeconvertedtoBPOFs.Thelinearestimatormustberedesignedto accommodatethecorrelationswiththe
BPOFs,anddegradationsinperformanceareexpectedhereforthesamereasonsasexpectedfortheBPOSDF.

Thecomputationof theBPOSDFposessomedifficultiesthatdonotarisewithsimpleconjugatematchedfilters
WhereastheconjugatematchedSDFusesequations(1)and(2)tosolvefortheSDFweightcoefficientsexactly,the
BPOSDFcannotbecomputedthatway If theF were phase-only binarized prior to evaluating the correlation matrix R
and substituting into equation (2), the resultant SDF, H, is anything but binary and phase only. Then H would have to
be phase-only binarized, but the correlation matrix would no longer be valid because the correlations with H would be

significantly different than those in the correlation matrix for which the weighting coefficients were designed The
design of the BPOSDF is a nonlinear optimization problem which can be solved iteratively 6'7. We chose to compute
the BPOSDF by use of a genetic algorithm because genetic algorithms have proven successful in applications like this 8

The genetic algorithm toolbox from MATLAB® facilitates this solution technique. Figure 4 is a flow diagram
illustrating the process used in computing the BPOSDF.

The first step is to start with the four conjugate matched filters of the images in Figure 1 along with equation (1) and an
initial population of guesses on the a vectors. Next we compute H for every a in the population. We chose a population

of 50 so there will be 50 H. Next, each H is phase-only binarized. Then 50 4xl correlation vectors are computed by
correlating each Hwith the four images from Figure 1. The mean-square error between each of the 50 4xl correlation
vectors and the prescribed correlation vector, Cpre, is then computed. The mean square error difference from the
previous iteration is evaluated as the algorithm stopping criteria If the stopping criteria is not met, the genetic
algorithm operates on the population of a by selection, crossover and mutation to obtain a new population of a for the
next iteration When the stopping criteria is finally met (in about 20-30 iterations), the a which provide the best mean
square error are chosen as the weighting coefficients. Once the weighting coefficients are determined, equation (1) is
evaluated, and H is phase-only binarized to compute the BPOSDF
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Figure 4. Genetic Algorithm to design BPOSDF



We again chose to use a single multilevel nonredundant SDF. For the BPOSDF design, the prescribed correlation
vector was C- [2500 2000 1500 1000] T. The correlation values obtained from the resultant BPOSDF were C = [1800
1330 1040 600] T. The discrepancy is attributable to the fact that, unlike the conjugate SDF, one cannot exactly satisfy

the prescribed conditions with a BPOSDF. There is no guarantee of an exact solution with the BPOSDF because of the
phase-only and binarizing operations. Nevertheless, the algorithm converges to a best-fit solution that yields significant
thresholds between the individual classes.

1800
Next, the BPOSDF was applied to 125 test
images. Figure 5 shows the correlation values. 1600
Note that most of the correlations are below the
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Figure 5. Correlations via multilevel BPOSDF

140

A new BPOSDF inter-class discriminator was designed using filters within class 1. The filter design approach was the
equal correlation peak (ECP) method 5. The three images shown in Figure 6a-6c were used in the BPOSDF design.
Figure 6a is at (0,0,0) degrees (pitch, yaw, roll). Figure 6b is at (4,4,4) degrees, and Figure 6c is at (8,8,8) degrees. The
prescribed correlation vector contained equal magnitudes for each of the 3 filters in the construction set. The resultant
correlation values with the computed BPOSDF were C = [1772 1777 1741] x, This BPOSDF was designed with the

expectation that the correlation values for the other images within the (0,0,0)-(8,8,8) class would be above the noise
level and above the level of this BPOSDF's correlation with the images from classes 2, 3 and 4.

Figure 6a. (P,Y,R)=(0,0,0) Figure 6b. (P,Y,R)=(4,4,4) Figure 6c. (P,Y,R)=(8,8,8)

The new ECP BPOSDF was used to compute correlations with 125 images within class 1. Figure 7 shows the resulting

correlation values. All correlations within class 1 were above 643. The three peaks are the correlations for the 3
construction images from Figure 6. The noise floor for all 125 correlations was around 250 so there was sufficient
signal-to-noise ratio to discem a true correlation. Table 1 shows a comparison of class 1 correlations against
correlations with class 2, 3 and 4 images. All images from class 2, 3 and 4 had correlation values below 221, putting



themunderthenoisefloorfor thisBPOSDF.TheresultsindicatethatthisECPBPOSDFisasufficientfilterfor
interclassdiscrimination.
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Figure 7. Correlations via ECP BPOSDF

140

Table 1. Comparison ofECP BPOSDF Correlations

Correlation

Value

69 1772204 221

Minimum
From

(0,0,0)-(8,8,8)
Range

643

After it was established that a BPOSDF can be designed to perform the first (interclass distinction) step in our two-step
pose estimation process, we proceeded to the pose estimation step using BPOFs with a linear estimator. For the BPOF
estimator, we chose a construction set of 27 filters. These filters corresponded to the same 27 images used as

construction filters for the conjugate matched filter pose estimator. BPOFs were computed for each of the 27 images in
the construction set. The 27x27 correlation matrix was computed, using the BPOFs. Using the 27x27 correlation
matrix as the prescribed correlations, the 3x27 linear estimator was computed using the same mathematical approach as

used for the conjugate filters. The 189 test images were run through the linear estimator, and statistics were compiled.
RMS pitch (out-of-plane) accuracy was 0.75 degrees. RMS yaw (in-plane) accuracy was 0.33 degrees. RMS roll (out-
of-plane) accuracy was 1.29 degrees. When using the BPOFs, in-plane accuracy is much better than out-of-plane
accuracy, and for this particular orientation, our estimator is least sensitive to roll. This makes sense intuitively because



theBPOFsarehighlysensitivetosignificantchangesinthespatialcontentoftheImage. At the orientation under study
m our class 1, roll motions do not effect large changes in spatial content.

Since the performance of the BPOF-based linear estimator was much worse than the conjugate filter estimator, we
proceeded to train an ANN using BPOFs seeking to improve the results. We again used 2-layer backpropagation. The
training set comprised the same 125 images used for the conjugate filter ANN. Best results were obtained with 40
hidden neurons and only 14 training epochs. After evaluating 189 test images, pitch accuracy was 0.38 degrees RMS,
yaw accuracy was 0.24 degrees RMS, and yaw accuracy was 0.71 degrees RMS. This was a fairly significant
xmprovement over the BPOF linear estimator. To observe the effects of over-fitting, we evaluated statistics on only the
64 test images not in the training set. Results were a pitch accuracy of 0.64 degrees RMS, yaw accuracy of 0.42 degrees

RMS, and roll accuracy of 1.23 degrees RMS. The estimates of the non-training poses were about as accurate as the
estimates using the linear estimator. This indicates that the BPOF ANN performance is hampered by over-fitting.

5. PRACTICAL CONSIDERATIONS

In the above sections we have defined a methodology for space vehicle pose estimation and performed a theoretical

proof-of-concept_ Keeping in mind that this methodology would ultimately be implemented in real hardware, we
adapted the methodology to using BPOFs, exclusively real-valued filters, for realization in the spatial light modulators
of an optical correlator. In this section we will discuss some observations made during the development and proof of
the pose estimation methodology. We will examine the class distinction step and the special considerations that must be
made when using BPOSDFs in this phase of the methodology. We then will discuss the quantitative performance of our
pose estimator, examining the differences in conjugate filters versus BPOFs and linear estimators versus nonlinear
estimators. We will then discuss how our methodology can be extended to full 6DOF pose estimation, including range
and in-plane translations. Then we will discuss some of the trades involved in implementation of this pose estimator in

an optical correlator versus a digital correlator for space vehicle applications.

For space vehicle pose estimation, if one assumes no a priori knowledge of the coarse pose of the vehicle (that is, the
pose is unbounded), one must first determine to which subset of poses the vehicle belongs. Then one proceeds with the
pose estimator described in Figure 1. When applying the methodology of Figure 1 to a target whose pose is unbounded,
two things can happen. First, one would have to design an estimator which yields high accuracy over a very wide range
of poses. This would involve a very high-order estimator using a very large set of construction filters. This would also
require a very large quantity of correlations to be evaluated in real-time. All of these requirements would be too
demanding for the limited resources of a space system. Secondly, even if one did apply the method of Figure 1 to such
an unbounded range of poses, there is a large risk of false detection. That is, the estimator might compute what it thinks
is a good pose estimate for an image that does not represent the true pose. Castro et al. 3 encountered this possibility

when including a detection flag as one of the states in the pose estimator.

To avoid the difficulties of a complicated high-order estimator and false detection, we proposed the 2-step approach
described in Section 2 above. The full 3-axis, 360-degree range of motion is spanned by a finite number of subsets of
poses. Each subset would be treated as a class. As section 3 showed (when using conjugate matched filters), a finite set
of multilevel SDFs could be designed to span the entire number of classes and identify the class of the test image.
When using BPOFs, a finite set of ECP SDFs would work, one BPOSDF for each class. Multilevel and ECP filters
were investigated in our research, but that does not preclude the design of other innovative SDFs that could perform
interclass discriminations. From our experiences with the BPOFs, for implementation in real hardware, the multilevel
SDFs are not very good candidates for this application. A variation of the ECP filters is the preferred design approach,
perhaps even a mutual orthogonal function (MOF) SDF for interclass and intraclass distinction 5 would work in this

application.

Table 2 summarizes the quantitative performance of our pose estimator in its various manifestations. All of these
results were evaluated with the Space Shuttle located at a range of 50 meters from the camera. By comparison, the
angular accuracy specifications for the Advanced Video Guidance Sensor (AVGS), a leading rendezvous and docking
sensor, at 30-50 meters are 0.25 degrees in-plane and 0.5 degrees out-of-plane. AVGS specifications from 50-100
meters are 1.2 degrees in-plane and 2.4 degrees out-of-plane 9. At the range of interest, our pose estimator yields



theoretical results comparable to the performance of the AVGS. In theory, our pose estimator could do as well as some
of the best sensors available. However, our sensor has yet to be studied for sensitivity and robustness to noise sources,
both random and colored. It is expected that noise within the correlator, detectors, SLMs and imaging system will
degrade the performance reported here.

Table 2. Pose Estimator Performance Results

RMS Estimation Linear

Error (degrees)

Pitch (out-of-plane)

Yaw (m-plane)

Roll (out-of-plane)

Estimator

using
Conjugate

Filters

0.22

0.20

0.14

ANN using
Conjugate

Filters

0.22

0.17

0.14

Linear

Estimator

using BPOFs

0.75

0.33

1.29

ANN using
BPOFs

0.38

0.24

0.71

Estimators using conjugate matched filters generally work better than BPOFs. There are two reasons for this. First, the
cross-correlation amplitude of conjugate filters drops off more slowly (as a function of pose) than it does for BPOFs.
This means that the BPOFs are better intra-class discriminators than the conjugate filters, but the BPOFs do not serve
well in an estimator which functions, to a large extent, as an interpolator between poses. The second reason is that
BPOFs are, in a sense, discrete approximations to the more continuous conjugate filters. The single-bit binarization of a

phase-only conjugate filter results in a quantization into only 2 levels whereas the conjugate filter has a continuity of
levels. Also, the BPOF is inherently nonlinear. An analogy is a feedback control system designed in the continuous
domain which is then discretized for implementation in digital hardware. Additional errors are introduced into control
system performance from discretization and its associated phase lag. Analog-to-digital conversion introduces
quantization errors and nonlinearities which adversely affect control system performance. So one can intuitively see
why BPOFs would yield worse results than conjugate filters in our pose estimator.

One observes from Table 2 that the nonlinear estimators using the artificial neural network generally perform better than
do the linear estimators. One would expect this result because the pose/correlation relationship is inherently nonlinear.

However, it was pointed out in sections 3 and 4 that the statistics in Table 2 are skewed by the high accuracy of the
estimator on the ANN's training images. The performance statistics of the non-training images reveal that the ANN
performance on non-training images is not very much better than that of the linear estimator. This finding is a departure
from Castro's results 3'4 on the 2DOF problem where ANNs dramatically improved estimator performance. Prior to

working the 3DOF problem, we investigated the 2DOF problem and reached the same findings as Castro. However, the
extension to 3DOF apparently makes the ANN solution more complicated. We believe the 4-dimensional hyperspace
(pitch, yaw, roll, correlation) function grows ever more complicated with each added DOF such that the nonlinear
function is very difficult to approximate with a finite set of construction filters, even with a neural network. The result
was over-fitting between the training poses. We found it very difficult to heuristically overcome the over-fitting
problem and could not improve the results very much.

For the reasons cited above, we have chosen to implement linear estimators in a hardware demonstration of this pose
estimator. Since relatively little performance is to be gained by the neural network, we feel it is not worth the extra
effort to generate a multitude of training images and run the algorithms to train the ANNs. Rather, it is more efficient to
perform the quick matrix multiplications using a small construction set of images in order to compute the linear
estimator. Furthermore, for a space vehicle application, the linear estimator might be the method of choice, after all. A
linear estimator will take up less memory in an on-board computer than would a high-order ANN. The on-board
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computation burden will be less with the simple operations inherent to a matrix multiplication. Finally, it will be easier,
and less controversial (from a programmatic viewpoint), to verify and validate a linear estimator than it would be for a
neural network. The inherent nonlinearity of the ANN means more resources must be spent on verification and
validation in order to cover enough cases to gain confidence in the system's performance. Also, the mere fact of using a

neural network makes project managers very nervous about the risks of flying a self-trained system, even though this
particular estimator is a static ANN trained and fixed a priori.

We anticipate extending our pose estimation methodology to complete 6DOF state estimation (rotation and translation).
We observed that estimating range can be relatively easy with this approach. As the target object moves away from the
camera, its size diminishes in the image plane. Consequently, the correlation value decreases as the object size
decreases. Though this relationship is not exactly linear, we learned that it is comparable to the pose/correlation
relationships for the rotations. Preliminary studies indicated that our pose estimator could independently estimate range
(separate from attitude) to an accuracy of about 5 meters over a range from 50-150 meters from the sensor's camera.
By comparison, the AVGS specification for range estimation accuracy is 1.67 meters at 50-100 meters 9. If one uses the
maximuna correlation value in the correlation plane as the measurement (as opposed to the correlation value at the
correlation plane origin), one could directly identify the in-plane translation of the target vehicle with respect to a
camera-fixed coordinate frame. Thus, all 6 degrees-of-freedom can theoretically be estimated from our technique. We
anticipate that estimating range along with pitch, yaw and roll could introduce more complexity into both linear and
nonlinear estimators. The 4DOF problem now presents a 5-dimensional hyperspace function of correlations. The
4DOF estimator might have a degraded overall accuracy compared to the numbers reported here. This will be
investigated further as we proceed to hardware demonstration.

Through the course of developing and verifying our pose estimator, we considered whether it is better to implement
this methodology in an optical correlator or a digital correlator. The optical correlator now has the benefit of
performing correlations 4000 times per second, potentially yielding high bandwidth. However, the bottleneck limiting
the bandwidth might actually reside with the frame rate on the correlation-plane detector. Even though BPOFs result in
degraded estimation performance, BPOFs are only a single bit per pixel, significantly reducing memory volume and
data throughput time, On the other hand, digital correlators can use conjugate filters in the estimator, improving overall
accuracy. The digital correlator might be lighter weight than the optical correlator because the digital correlator doesn't
require a laser and its accompanying power supply. Digital correlators, however, might not yet be as fast as optical
correlators despite recent advances in digital signal processing (DSP) technology, and the DSPs might consume more
power than the optical correlator's laser. All these factors will be considered in assessing which type of correlator IS
better suited for space vehicle applications, particularly on microsatellites in which weight, power and volume are a
premium.
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